DTA and IR Absorption Spectra OF (80-x)TeO2 – 20ZnO – (x)Er2O3 Glass System

 

Sulhadi, M. R. Sahar, and M. S. Rohani

 

Jabatan Fizik, Fakulti Sains, Universiti Teknologi Malaysia

81310 Skudai, Johor DT

 

E-mail: sulhadi_fis@yahoo.com

 

 

Abstract

 

Er3+–doped tellurite glasses of (80-x)TeO2-20ZnO-(x)Er2O3 system (0.5mol%≤x≤2.5mol%)has successfully been made by melt quenching technique. The thermal stability and structure of glass has been investigated by means of DTA and FTIR spectroscopy. The thermal parameters, such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a wide and stable glass formation in which the glass stability around 99oC–140oC was obtained and increases with the Er2O3 content. The spectral shift in FTIR spectra is related to the change in the coordination of the erbium ions. The changes observed were consistent with the stretching vibration mode of TeO4 trigonal bipyramids and TeO3 trigonal pyramids, and bending vibration mode of Te–O–Zn in the linkages. It is also found that the sharp absorption peaks shifted from 650cm-1 to  672cm-1 and consistent with the increases of the Er2O3 content. The small absorption peaks around 770cm-1, 1115cm-1 and 3420cm-1 are found in all samples.

 

 

References

 

[1]            Burger H., Kneipp K., Hobert H., Vogel W., 1992. J. Non-Cryst. Solids. 151, 134.

[2]            El-Mallawany R., 2002. Tellurite Glasses Handbook: Physical Properties and Data, CRC Press LLC.

[3]            El-Moneim A. A., 2002. Mater. Chem & Phys. 73, 318.

[4]            Feng X., Tanabe S., Hanada T., 2001. J. Non-Cryst. Solids. 281, 48.

[5]            Gan Fuxi, 1995. Laser Material, Word Scientific Publishing Co. Pte. Ltd.

[6]            Hu L., Jiang Z., 1996. Phys. Chem. Glasses. 37 [1], 19.

[7]            Kawasaki S., Honma T., Benino Y, Pujiwara T., Sato R., Komatsu T., 2003. J. Non-Cryst. Solids. 325 [61], 105.

[8]            Liu H.S., Chin T.S., Yung S.W., 1997. Mater. Chem & Phys. 50, 1.

[9]            Marjanovic S., Toulouse J., Jain H., Sandmann C., Dierolf V., Kortan A.R., Kopylov N., Ahrens R.G., 2003. J. Non-Cryst. Solids. 322, 311.

[10]         Nazabal V., Todoroki S., Nukui A., Matsumoto T., Suehara S., Hondo T., Araki T., Inoue S., Rivero C., Cardinal T., 2003. J. Non-Cryst. Solids. 325, 85.

[11]         Neindre L.L., Jiang S., Hwan B.C., Luo T., Watson J., Peyghambarian N., 1999. J. Non-Cryst. Solids. 255, 97.

[12]         Nukui A., Taniguchi T., Miyata M., 2001. J. Non-Cryst. Solids 293-295, 255.

[13]         Sahar M.R., Noordin N., 1995. J. Non-Cryst. Solids. 184, 137.

[14]         Sahar M.R., Jehbu A.K., Karim M.M., 1997. J. Non-Cryst. Solids. 213&214, 164.

[15]         Sidebottom D.L., Hruschka M.A., Potter B.G., Brow R.K., 1997. J. Non-Cryst. Solids. 222, 282.

[16]         Xia H., Nie Q., Zhang J., Wang J., 2003. Mater. Lett. 4446, 1.