The Effects of Annealing Treatment on

GaN-based UV Photodetectors

 

Y.C. Lee, Z. Hassan, M. R. Hashim, and K. Ibrahim.

 

School of Physics,

University Sains Malaysia,

11800 Penang, Malaysia.

Tel: 604-6533673, Fax: 604-6579150

 

Email: leeyc1979@yahoo.com

 

 

Abstract

 

The III-V nitrides (GaN and AlGaN) are wide band gap semiconductor materials, having excellent properties for fabricating electronic as well as optoelectronic devices operating under high-temperature and high-power conditions. The III-V nitrides are ideal photodetector materials operating at a detection range of between 240-360nm, with long wavelength response cut-off, which is directly related to the band gap of the material in the active region and thus does not require external filters. Low dark current detectors are extremely important to produce a photodetector with high detectivity, where the limitation to a photodetector’s detectivity is due to the photodetector’s noise level. The achievement of low dark current is critical to producing a UV photodetector with a high signal-to-noise ratio.    

In this work, GaN-based metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with nickel (Ni) Schottky contacts were fabricated and characterized. A comparative study of annealing treatment at various temperature (400°C-700°C) to the photodetectors’ dark current level were carried out. Cryogenic cooling after the annealing treatment was also performed to determine the effects of this treatment to the devices’ performance.  Electrical characterization was performed by current-voltage (I-V) measurement to investigate the Schottky contact properties of the photodetectors.

 

References

 

  [1]          T. Sawada, Y. Ito, K. Imai, K. Suzuki, H. Tomozawa, and S. Sakai, Appl. Surf. Sci., 159-160, (2000), 452.

  [2]          K. Ubrahim, A.A. Aljubouri, Y. C. Lee, Z. Hassan, and M. R. Hashim, Proc. SPIE Int. Soc. Opt. Eng., 5353, (2004), 151.

  [3]          Mi Ran Park, Wayne A. Anderson, and Seong Ju Park, MRS Internet J. Nitride Semicond. Res. 5S1, (2000), W11.77

  [4]          E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Oxford University Press, New York, 2nd ed., (1998), p.39.

  [5]          V. L. Rideout, Solid-State Electron. 18, (1975), 541.

  [6]          Hacke P, Detchprohm T, Hiramatsu K, and Sawaki N, Appl. Phys. Lett., 63, (1993), 2676.

  [7]          S. Averine, Y. C. Chan, and Y. L. Lam, Appl. Phys. Lett., 77(2), (2000), 274-276.

  [8]          S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York, 2nd ed., (1981).

  [9]          S. Guha, V. M. Arora, and V. P. Salvi, Solid-State Electron., 20, (1977), 431.

[10]          J. Ashok, J. M. Borrego, and R. J. Gutman, Electron. Lett., 14, (1978) 332.

[11]          S. E. Mohney and S. S. Lau in GaN and Related Materials II, edited by S. J. Pearton, Gordon and Breach, New York, (1998), p.546-548.

[12]          G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, Longman, Essex, 16th ed., (1995), p.73.

[13]          K. J. Duxstad, E. E. Haller, K. M. Yu, M. T. Hirsh, W. R. Imler, D. A. Steigerweld, F. A. Ponce, and L. T. Romano, Mat. Res. Soc. Symp. Proc., V449, (1997), 1049.

[14]          Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, and J. M. Redwing, J. Appl. Phys., 84(2), (1998), 881-886.