Mesopores and micropores of carbon pellet prepared from H2SO4 treated self-adhesive carbon grains from oil palm empty fruit bunches

 

Astimar Abdul Aziz2, Mohamad Deraman1,  Mohd. Hafizuddin Jumali1, Ramli Omar1,  Abubaker-Elshiekh Abdelrahman1, Tang Hon Peng1, Mazliza Mohtar1,

Masliana Muslimin1, Yap Yee Ling1 and Julia Tan Meihua1

 

1School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Malaysian Palm Oil Board, P.O.Box 10620, 50720 Kuala Lumpur, Malaysia

 

 

ABSTRACT

 

Self-adhesive carbon grains (SACG) from oil palm empty fruit bunches (EFB) was treated with 0.0, 0.2, 0.4 and 0.6 M of H2SO4 before drying. Green pellets prepared from the treated SACG were carbonized at 600 0C in nitrogen atmosphere using multi-steps heating profile to produce carbon pellets (CP). Elemental (CHNO) analysis of the treated SACG shows a reduction of carbon content from 49.3 % to 42.9%, whereas thermogravimetric analysis (TGA) shows an increase of carbon yield at 600 0C from 39.5% to 45.3%. Treatment with 0.0 M to 0.2 M H2SO4 increased the BET surface area (SBET) of the CP from 56.2 up to 354.4 m2/g STP respectively, and the maximum SBET is 386.5 m2/g STP at 0.6 M treatment. Similar trend was observed on the CP micropore area (SMIC) whereby the maximum SMIC is 360.54 m2/g STP at 0.6 M. Mesopore area (SMES) of the CP increased to 81.9 m2/g STP at 0.2 M. However, further increase of acid concentration was found to reduce the SMES of the CP. Maximum total pore volume (VTOT) and micropore volume (VMIC) of the CP treated with 0.6 M H2SO4 were 0.193 and 0.146 cc/g STP respectively. Maximum mesopore volume (VMES) of the CP was 0.065 cc/g STP and was achieved when treated with at 0.2 M H2SO4. Further increasing acid concentration was found to reduce the VMES of the CP. Increase of H2SO4 concentration up to 0.4 M was found to reduce the mesoporosity (VMES/VTOT) as well as the average pore diameter of the carbon pellets, but these values increased slightly at 0.6M.

 

REFERENCES

 

[1]                 Review of the Malaysian Oil Palm Industry 2003. Malaysian Palm Oil Board, Ministry of Primary Industries, Malaysia.

[2]                 Abdul Aziz, Z. (1994); Proceedings of 3rd National Seminar on OPTUC (Commercial Utilization of Oil Palm Empty Fruit Bunches). 27-29 September 1994, Kuala Lumpur. pp. 85-88.

[3]                 Deraman, M. (1993a); Solid State Science and Technol. 1(1), 41-49

[4]                 Deraman, M. (1993b); PORIM Bulletin. 26, 1-5

[5]                 Deraman, M. (1995); PORIM Bulletin. 30, 1-5.

[6]                 Deraman, M. (1994); J. Phys. D. Appl. Phys. 27, 1060-1062.

[7]                 Deraman, M. (1995); PORIM Bulletin. 30, 1-5.

[8]                 Deraman, M., Ismail, M.P. (1995); Pertanika J. Sci. & Technol. 3, 302-209.

[9]                 Deraman, M., Omar, R., Harun, A.G. (1998); J. Mater. Sci. Lett. 17, 2059-2060.

[10]              Deraman, M., Talib, M., Mustapa, I.R., Omar, R., Zakaria, S., Harun, A.G. and Azmi, A. (2000); J. Solid St. Sci. and Technol. Letter. 7(1&2), 181-187.

[11]              Deraman, M., Zakaria, S., Omar, R. and Abdul Aziz, A. (2000); Jpn. J. Appl. Phys. 39, 1236-1238.

[12]              Abdul Aziz, A., Deraman, M., Omar, R., Jumali, M.H., Mohtar, M. and Muslimin, M. (2004); J. Solid St. Sci. and Technol. Letter. 11(1), 77-83.

[13]              Muslimin, M., Deraman, M., Mustapa, I.R., Jumali, M.H., Omar, R., Mohtar, M., Abdul Aziz, A. and Abdelrahman, A.E. (2004); J. Solid St. Sci. and Technol.  12(1), 136-143.

[14]              Abdul Aziz, A., Deraman, M., Jumali, M.H., Omar, R.,  Muslimin, M. and  Mohtar, M. (2003); Prosiding Seminar IRPA RMK-8, Universiti Kebangsaan Malaysia, Kategori EAR, Jilid II, pp. 344-347.

[15]              Deraman, M., Omar, R., Zakaria, S., Talib, M., Mustapa, I.R., Azmi, A. and Abdul Aziz, A. (2004); Advanced in Polymer Technology. 23(1), 1-8.

[16]              Talib, M., Deraman, M., Omar, R., Zakaria, S., Mustapa, I.R., Alias, N.H. and Jaafar, R. (2002); Solid St. Sci. and Techno. 10(1&2), 338- 346.

[17]              Abdul Aziz, A., Deraman, M., Abdul Rahman, R.M., Omar, R., Jumali, M.H., Mohtar, M. and Muslimin, M. (2003); Solid St. Sci. and Technol. 11 (1), 1-8.

[18]              Sabio, M.M., Rodriguez-Reinoso, F., Caturla, F. and Selles, M.J. (1995); Carbon. 33(8), 1105-1113.

[19]              El-Hendawy, A.N.A. (2003); Carbon. 41(4), 713-722.

[20]              Jenkins, G.M. and Kawamura, K., (1976); Chemical Reactivity. In: Polymeric Carbon-Carbon Fibre, Glass and Char; Eds. Jenkins, G.M. and Kawamura, K. Cambridge University Press, London. pp. 135-146.

[21]              Gregg, S.J. and Sing, K.S.W. (1982); Adsorption, Surface Area and Porosity. Academic Press, London.

[22]              Hassler, J.W. (1974); In: Purification with Activated Carbon: Industrial Commercial Environmental. Chemical Publishing, New York. pp. 219.

[23]              Hu, Z., Srinivasan, M.P., Ni, Y. (2001); Carbon. 39, 877-886.

[24]              Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H. and Araki, T. (2002); Carbon. 40: 87-93.

[25]              Faix, O. (1992); Fourier Transform Infrared Spectroscopy. In: Methods in Lignin Chemistry; Eds. Lin, S.Y. and Dence, C.W. Springer-Verlag, Berlin, Heidelberg., pp. 92.

[26]              Molina-Sabio, M., Rodriquez-Reinoso, F., Caturla, F. and Selles, M.J. (1995); Carbon. 33(8), 1105-1113.

[27]              McEnaney, B. and May, T.J. (1985); Porosity in Carbons and Graphite. In: Introduction to Carbon Science; Eds. Harry Marsh et al. Butterworth, UK. pp. 154-196.

[28]              Chen, Uy., Gerald, J.F., Chadderton, J.F. and Chaffron, L. (1999); App. Physics Letters. 74(19), 2782-2784.

[29]              Franklin, R.E. (1950); Acta Crystallography. 3, 107-121.