Junaidah Osman1, T.Y. Tan1, D.R. Tilley1, Y. Ishibashi2, and R. Murgan1


1 School of Physics, Universiti Sains Malaysia,

11800 USM, Penang, Malaysia.

2Faculty of Communications, Aichi Shukutoku University, Nagakute-cho, Aichi Prefecture 480-1197, Japan.







Due to the existence of spontaneous polarization below transition temperature TC , ferroelectrics materials like BaTiO3 have been known to possess very high linear electric susceptibility.  It is expected that these materials also have very high nonlinear susceptibility coefficients for second- and third-order nonlinear processes like second-harmonic generation (SHG) and third-harmonic generation (THG).  In principle, they would be able to produce SHG signal for example and have the potential to be used as a frequency doubler at terahertz frequency range. 

Here, we explore these possibilities.  Based on the Landau-Devonshire theory and the Landau-Khalatnikov dynamical equation, we formalize a theory to calculate all the linear and nonlinear electric susceptibility coefficients for bulk ferroelectrics materials by assuming that they have tetragonal symmetry at temperature below TC..  Based on experimentally obtained parameter values for BaTiO3 we estimate the magnitude of one of the nonlinear susceptibility coefficients for SHG.  Finally, using the theory of nonlinear wave propagation we estimate the amount of SHG signal that can be transmitted from a ferroelectric Fabry-Perot resonator.





[1]            G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. R. Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995).

[2]            D. Frohlich and St. Leute, Phys. Rev. Lett. 81, 3239 (1998).

[3]            T. Zhao, Z-H Chen, F. Chen, W-S Shi, H-B Lu, and G-Z Yang, Phys. Rev. B 60, 1697 (1999).

[4]            B-Y Gu, B-Z Dong, Y Zhang, and G-Z Yang, Appl. Phys. Lett 75, 2175 (1999).

[5]            W. F. Zhang, M. S. Zhang, Z. Yin, Y. Z. Gu, Z. L. Du, and B. L. Yu, appl. Phys. Lett. 75, 902 (1999).

[6]            W. F. Zhang, Y. B. Huang, M. S. Zhang, and Z. G. Liu, Appl. Phys. Lett. 76, 1003 (2000).

[7]            C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, Phys. Rev. B 61, 10688 (2000).

[8]            D. G. Arnone, C. Ciesla, and M. Pepper, Phys. World, 35 (April 2000).

[9]            P. Egger, and J. Hulliger, Coordination Chem. Rev. 183, 101 (1999).

[10]         Junaidah Osman, S-C Lim, and D. R. Tilley, J. Korean Phys. Soc. 32, S446 (1998).

[11]         Junaidah Osman, Y. Ishibashi, and D. R. Tilley, Jpn. J. Appl. Phys. 37, 4887 (1998).

[12]         Y.G. Wang, W.L. Zhong and P.L. Zhang , Solid State Commun. 92 (1994) 519.

[13]         [13]  M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and related Materials  (Clarendon, Oxford, UK, 1977).

[14]         R. Murgan, D.R. Tilley, Y. Ishibashi, J.F. Webb, and J. Osman,  J. Opt. Soc. Am. B 19 (2002) 2007.

[15]         P.N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, Cambridge, UK 1990).

[16]         S.V. Popov, Yu.P. Svirko, and N.I. Zheludev, Susceptibility Tensors for Nonlinear Optics (Institute of Physics, London, 1995).

[17]         Y.R. Shen, The Principle of Nonlinear Optics, Wiley, New York, 1984.

[18]         F. Razak, J.F. Webb, R. Murgan, Y. Ishibashi, and J. Osman, Ferroelectrics 273 (2002) 2557.

[19]         M. Born and E. Wolf, Principle of Optics:  Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. Pergamon Press, Oxford, 1980.

[20]         R. Murgan, D.R. Tilley, J. Osman, and M.N.A Halif, “Second-Harmonic Genaration (SHG) in Commensurate and Incommensurate  Materials”: Proceeding National Physics Conference PERFIK 2003, Fraser Hill, Malaysia  August 2003.