CARRIER TRANSPORT AND I-V CHARACTERISTIC OF Au/Si SILICIDES USING OPEN PHOTOACOUSTIC CELL AND FOUR POINT-PROBE TECHNIQUES

Yap Siew Hong, W. Mahmood Mat Yunus, Mohd. Maarof Moksin and Zainal Abidin Talib

Applied Optics Laboratory
Department of Physics
Faculty of Science and Environmental Studies
43400 Universiti Putra Malaysia
Serdang, Selangor.

Email: siewhong78@yahoo.co.uk

ABSTRACT

The carrier transport properties of Au/Si samples annealed at three temperatures (i.e. 100°C, 363 °C and 800°C) were investigated using open photoacoustic cell (OPC) technique. A gold film of 45 nm was deposited on the silicon substrate and annealed in air environment. We observed that Au$_{8.1}$Si$_{1.9}$ silicide and Au$_7$Si(622) silicide were formed at both 363°C and 800°C annealing temperature. Obviously the Au$_{8.1}$Si$_{1.9}$ silicide was observed in all Au/p-Si system. The result indicates that the recombination process increases with the formation of Au$_7$Si silicide. From the analysis of photoacoustic phase fitting and four point probe techniques, surface recombination velocity of gold silicide was found increase with the increasing annealing temperature. However, the band-to-band recombination lifetime decreased as annealing temperature increased. The I-V characteristic shows the Schottky curves for the annealing temperature of 363°C and 800°C. This behavior is due to the formation of Au$_7$Si(622) silicide clusters.

REFERENCES

