A. N. Yusoff and M. H. Abdullah


Diagnostic Imaging and Radiotherapy Programme,

Faculty of Allied Health Sciences,

Universiti Kebangsaan Malaysia,

50300 Jalan Raja Muda Abdul Aziz, Kuala Lumpur.

*Physics Programme, School of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor Darul Ehsan.





The effects of substituting (Li+0.5Fe3+0.5) ions with Ni2+ ion on microstructural, magnetic, d.c. and a.c. electrical properties of some polycrystalline (Li0.5Fe0.5)0.7-xNixZn0.3Fe2O4 ferrites were studied. The d.c. electrical resistivity (rdc) at 300 K increases with Ni content, while the experimental density (d), saturation magnetisation (Ms), initial permeability (mi) and Neel Temperature (TN) show otherwise. The variations of magnetic and electrical properties are explained on the basis of cation distribution between the tetrahedral (A) and octahedral (B) sites. The complex impedance measurement was performed at different input voltage in ten decades of frequency (1 mHz - 10 MHz). The impedance spectrum for all samples is composed of two overlapping semicircles with negative capacitance phenomenon below approximately 1 Hz. However, the negative capacitance phenomenon is absent for x = 0.7. The two semicircles at high and low frequencies are mainly attributed to the grain (b) and grain boundary interfacial (g) processes respectively. The grain boundary interfacial response shows a non-linear dependence on the input voltage, where the corresponding impedance semicircle is smaller for a larger amplitude. However, a linear response is observed for the grain component. Simulation on the impedance data was performed using a complex nonlinear least square (CNLS) fitting method based on an equivalent circuit representation. The simulated quantities are the physical parameters of the microstructural components for the ferrites. The dependences of the a.c. electrical properties of the grain and the grain boundary interfacial components on composition and the amplitude of the input voltage are discussed.




[1]            Prakash, C. (1987) J. Mater. Sci. Lett. 6, 504.

[2]            Ravinder, D. (1992) J. Mater. Sci. Lett. 11, 1498.

[3]            Kuanr, K., Singh, P. K., Kishan, P., Kumar, N., Rao, S. L. N., Singh, P. K. and Srivastava, G. P. (1988) J. Appl. Phys. 63(8), 3780.

[4]            Cho, S. B., Kang, D. H. and Oh, J. H. (1996) J. Mater. Sci. 31, 4719.

[5]            Cheng, K. B., Ramakrishna, S. and Lee, K. C. (2000) Composites : Part A 31, 1039.

[6]            Das, N. C., Khastgir, D., Chaki, T. K. and Chakraborty, A. (2000) Composites : Part A 31, 1069.

[7]            Kishan, P. Sagar, D. R. and Swarup, P. (1985). J. Less-Common Met. 108, 345.

[8]            Mitra, R. Puri, R. K. and Mendiratta, R. G. (1992) J. Mater. Sci. 27, 1275.

[9]            Darowicki, K. (1995) Electrochemica Acta 40(4), 439.

[10]         Braun, P. B. (1952) Nature 170, 1123.

[11]         Went, J. J. and Wijn, P. J. (1951) Phys. Rev. 82, 269.

[12]         Kleitz, M. and Kennedy, J. H. (1979) in Proceedings of the Fast Ion Transport In Solids, Electrodes and Electrolytes, edited by P. Vashista, J. N. Mundy and G. K. Shenoy (Elsevier, North Holland), p. 185.

[13]         Chiang, Y. M., Lavik, E. B., Kosacki, I. and Tuller, H. L. (1997) J. Electroceramics, 1:1, 7.

[14]         West, A. R., Sinclair, D. C. and Hirose, N. (1997) J. Electroceramics 1:1, 65.

[15]         J. Fleig and J. Maier, J. Electroceramics 1:1, 73, (1997)

[16]         Badwal, S. P. S. (1988) in Proceeding of the International Seminar on Solid State Ionic Devices, edited by B. V. R. Chowdari and S. Radhakrishna (World Scientific, Singapore), p. 165.

[17]         Anderson, J. C. (1964) Dielectrics (Chapman and Hall Ltd., London), p. 94.

[18]         Anis, M. K. and Jonscher, A. K. (1993) J. Mater. Sci. 28, 3626.

[19]         Jonscher, A. K. (1991) J. Mater. Sci. 26,1618.

[20]         Jonscher, A. K. (1995) Universal Relaxation Law (Chelsea Dielectric Press Ltd., London, p. 152.

[21]         Baker, B. C. and West, A. C. (1997) J. Electrochem. Soc. 144(1), 164.

[22]         Jonscher, A. K. (1983) Dielectric Relaxation in Solids (Chelsea Dielectric Press Ltd., London), p. 87.

[23]         Dissado, L. A. and Hill, R. M. (1980) Phil. Mag. B41, 625.

[24]         Dissado, L. A. and Hill, R. M. (1981) J. Mater. Sci. 16, 1410.