Solid State Science and Technology, Vol. 11, No.1 (2003) 1-8




Astimar Abdul Aziz, Mohamad Deraman, Rus Mahayuni Abdul Rahman, Ramli Omar, Mohd. Hafizuddin Jumali, Mazliza Mohtar and Masliana Muslimin

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor, Malaysia.




Self-adhesive carbon grain (SACG) was prepared from oil palm empty fruit bunch by a low carbonization temperature. Green pellets (GP), with a dimension of 9.4 mm in diameter and 1.3 mm in thickness, made from the SACG added with 0.0% to 7.0% KOH by weight were carbonized up to 700 0C in a nitrogen atmosphere using a multi-steps heating profile. It was found that carbon pellets from GP of 1.0% KOH have the BET surface area (Y1), pore area (Y2), pore volume (Y3), and average pore diameter (Y4) of 290 m2/g, 280 m2/g, 0.112 m3/g and 19 respectively. Further increased in the KOH content did not significantly change these values. These values, Y1 to Y3, and Y4 are approximately 9.1, 9.1, 9.3 times higher, and 1.5 times lower than those of the carbon pellet from the GP without KOH respectively. This result shows the advantage of the SACG since significant change in the porosity characteristic can be made by using only a very small quantity of activating agent (KOH) compared to the quantity normally required by the non-precarbonized precursor. The result also shows that the mesopore volume is higher than that of the micropore and macropore. Without KOH, carbon pellets do not have micropores and with 0.5% KOH the micropores are formed and its volume decreases with increasing KOH content. Maximum volume of mesopores occurs at the KOH content approximately in between 4% - 5% and it decreases beyond this range. Macropores do not significantly change with the KOH content.





[1] Bansal, R.C., Donnet, J.B., Stoekli, F.(1988). Active carbon. New York: Marcel


[2] Park, S.J. and Jung, W.Y. (2002). Carbon, 40(11); 2021-2040.

[3] Anonymous. (1994). Carbon, 32(5); 1015-1028.

[4] Hussein, M.Z., Tarmizi, R.S.H., Zainal, Z. and Ibrahim, R. (1996). Carbon,

34(11); 1447-1454.

[5] Tsai, W.T., Chang, C.Y. and Lee, S.L. (1997). Carbon 35(8); 1198-1200.

[6] Lua, A.C. and Guo, J. (1998). Carbon 36(11); 1663-1669.

[7] Hayashi J. (1999). Carbon, 37(3); 524-526.

[8] Norini, H., Wan Asma, I. and Mohd. Azmi, M.I. (1996). Proc. Fourth Seminar on Utilization of Oil Palm Tree (Oil Palm Residues: Progress Towards Commercialization), Kuala Lumpur,pp:16-24.

[9] Gurmit, S. (1994). Proc. Third National Seminar on Utilization of Oil Palm Tree and Other Palms. (Koh, M.P. et al., Eds.),; Kuala Lumpur, FRIM, Kepong, pp:


[10] Mohamad, D. (1994). J. Phys. D. Appl. Phys., 27; 1060-1062. [11] Mohamad D. (1993). Solid State Science and Tech., 1(1); 41-49 [12] Mohamad, D. (1993). PORIM Bulletin, 26: 1-5.

[13] Mohamad, D. (1995). PORIM Bulletin, 30: 1-5.

[14] Mohamad, D., Ismail, M.P. and Said, M.M. (1995). J. Mater. Sci. Lett., 14; 781-


[15] Mohamad, D., Omar, R., Talib, M., Mustafa, I.R., Alias, N., Zakaria, S. and

Jaafar, R. (2001). J. Solid State Sci. and Technol. Lett., 8(1&2); 77-82.

[16] Mohamad, D., Omar, R., Zakaria, S., Alias, N., Mustafa, I.R., Talib, M. and

Jaafar, R. (2001). J. Solid State Sci. and Technol., 9(1&2); 131-136.

[17] Mohamad, D., Omar, R., Zakaria, S., Mustafa, I.R., Talib, M. and Alias, M. (2002a). J. Mater. Sci. (UK/USA), 37(16); 3329-3335.

[18] Mohamad, D., Mohtar, M., Omar, R. and Abdul Aziz, A. (2002b). Phys. J. of the Indonesian Physical Society, volume A6; 05141-05144.

[19] Talib, M., Deraman, M., Alias, N., Mustafa, I.R., Zakaria, S. and Omar, R.

(2002). J. Solid State Sci. and Technol., 10(1); 338-346.

[20] Illan-Gomez, M.J., Garcia-garcia, A., Salinaz-Martinez de Lecea, C., Linarez- Solano, A. (1996). Energy Fuels, 10(5); 1108-1114.

[21] Ahmedpour, A., Bradley, A.K., Duong, D.D. (1998). Ind. Eng. Chem. Res.,

37(4); 1329-1334.

[22] Ahmedpour, A., Duang, D.D. (1999). Carbon, 34(4); 471-479.

[23] Evans, M.J.B., Halhop, E., MacDonald, J.A.F. (1999). Carbon, 37(2); 269-274. [24] Lozano-Castello, D., Lillo-Rodenas, M.A., Cazorla-Amoros, D., Linares-

Solano, A. (2000). Carbon, 39(5); 741-749.

[25] Millet, M.A., Baker, A.J. and Satter, L.D. (1976). Biotechnology and

Bioengineering Symposium, No. 6: 125-153.

[26] Fengel, D. and Wegener, G. (1989). Wood, Chemistry, Ultrastructure, Reactions

(Fengel, D. and Wegener, G. Eds.), Walter de Gruyter, New York, p: 296-318. [27] Mohamad, D., Omar, R., Harun, A.G.(1998). J. Mater. Sci. Lett., 17; 2059-2060. [28] Byrne, C.E. and Nagle, D.C. (1997). Carbon, 35(2); 259-266.

[29] Byrne, C.E. and Nagle, D.C. (1997). Carbon, 35(2); 267-273.

[30] Azmi, A. and Deraman, M. (1998). Proc. Postgraduate Colloquium, Faculty of

Applied and Physical Sciences, Universiti Kebangsaan Malaysia, 17 December,

1998, p. 240.

[31] Gregg, S.J. and Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity, 2nd

ed., Academic Press, London, p: 2-4.

[32] Mikhail, R.S., Brunauer, S. and Bodor, E. E. (1968). J. Colloid Interface Sci. 26;


[33] Harkins, W. D. and Jura, G. (1943). J. Chem. Phys., 11; 431.

[34] Barret, E.P., Joyner, P.B. and Halenda, P. (1951). J. Am. Chem. Soc., 73; 373-


[35] Hu, Z. and Vansant, E.F.(1995). Carbon, 33(9); 1293-1300.

[36] Lozano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A., Quinn, D.F. (2002). Carbon, 40(7); 989-1002

[37] Teng, H. and Wang, S. (2000). Carbon, 38(6); 817-824.