Solid State Science and Technology, Vol. 12, No 1 (2004) 65-70

 

THE INFLUENCE OF COOLING RATE ON THE CRITICAL CURRENT DENSITY OF BSCCO-2223 Ag-SHEATHED SUPERCONDUCTOR TAPES USING POWDERS PREPARED BY CO-PRECIPITATION METHOD

 

Mahizah Ismail1, R. Abd-Shukor2, Imad Hamadneh3, S.A. Halim3

 

1Faculty of Science and Technology, Universiti Pendidikan Sultan Idris,

35900 Tanjong Malim, Perak, Malaysia

 

2School of Applied Physics, Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor, Malaysia

 

3 Faculty of Science and Enviromental Studies, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia

 

 

 

ABSTRACT

 

The influence of cooling rate after final reaction on the transport critical current density of Ag-sheathed Bi2Sr2Ca2Cu3Osuperconductor tapes prepared from fine powders is reported. The tapes were fabricated using the powder-in-tube (PIT) method. The critical temperature, Tc and transport critical current density, Jc were measured at liquid nitrogen temperature by standard four-probe method in conjunction with a CTI cryogenics Model 21 closed cycle refrigerator. A Philips XL-30 scanning electron microscope was used to record the microstructure of the sample. It was found that Jc  for these tapes increased by 40% when slow cooled at 1 oC/min. The 2223 phase generally align almost parallel to the current flow direction. SEM image also shows that larger grains size is visible in high critical current density tapes. We suggested that the decreased in Jc occur when cooled with slower rate than

1 oC/min is because of the appearance of the 2212 phase by the decomposition of the 2223 phase.

 

http://journal.masshp.net/wp-content/uploads/Journal/2004/Mahizah%20Ismail%2065-70.pdf

 

 

 

 

 

 

 

 

REFERENCES

 

[1]       Roslan Abd. Shukor. 2003. Ketertiban dalam Superkonduktor Suhu Tinggi. Penerbit

UKM.

[2]        Umezawa, A., Feng, Y., Edelman, H. S., High, Y. E., Larbalestier, D. C., Sung, Y. S., Hellstrom, E. E. & Fleshler, S. 1992. Physica C. 198: 261

[3]       High, Y. E., Feng, Y., Sung, Y. S., Hellstrom, E. E. & Larbalestier, D. C. 1994.

Physica C. 220: 81

[4]       Li, Q., Brodensen, K., Hjuler, H. A. & Freltoft, T. 1993. Physica C. 217: 360.

[5]       Parrell, J. A. & Larbalestier, D. C. 1995. IEEE Trans. Appl. Supercond. 5: 1275.

[6]       Umezawa, A., Feng, Y., Edelman, H. S., Willis, T. C., Parrell, J. A. & Larbalestier, D.

C. 1994. Physica C. 219: 378

[7]       Huang, Y. B., Fuente, G. F., Larrea, A. &  Navarro, R. 1994. Supercond. Sci. Technol.

7: 759.

[8]       Bulaevskii, L. N., Clem, J. R., Glazman, L. I. & Malozemoff, A. P.. 1992. Phys. Rev.

B. 45: 2545.

[9]       Hensel, B., Grivel, J. C., Jeremi, A., Perin, A., Pollini, A. & Flukiger, R. 1993.

Physica C. 205: 329.