Solid State Science and Technology, Vol. 12, No. 1 (2004) 136-143

 

BULK DENSITY, MICROCRYSTALLITE AND POROSITY OF CARBON PELLET FROM NITRIC ACID TREATED SELF-ADHESIVE CARBON GRAIN FROM OIL PALM EMPTY FRUIT BUNCH

 

Masliana Muslimin, Mohamad Deraman, Mohd. Hafizuddin Jumali, Ramli Omar. Izan Roshawaty Mustapa*, Mazliza Mohtar, Astimar Abdul Aziz, Rus Mahayuni Abd. Rahman and AbuBakar Elshiekh Abdelrahman

 

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan

Malaysia, 43600 Bangi, Selangor, Malaysia

*Department of  Physics, Faculty of Science and Technology, Universiti Pendidikan Sultan

Idris, 35900 Tanjung Malim, Perak, Malaysia

 

 

 

 

ABSTRACT

Self-adhesive carbon grain (SACG) prepared from oil palm empty fruit bunch (EFB) by a low carbonization process were treated with 1, 3, 5 and 7 Molar (M) nitric acid (HNO3) at

270C  and  1000C.  The  SACG  green  pellets  were  converted  into  carbon  pellets  by  a

carbonization process up to 10000C in N2 environment using a multi-step heating profile. The treatment was found to increase the green pellets density from 1.24 gcm-3 to about 1.35gcm-3, but there was no significant change in pellet density after carbonization. X-ray diffraction analysis showed that 1 M treatment at 270C caused the stacking height (Lc) and width (La) of microcrystallites of carbon pellets to increase from 0.866 to 1.339 nm and from 3.534 to

8.720 nm respectively. Above 1 M the microcrystallite dimension of carbon pellets decreased but their values are still higher than that for the untreated samples. A similar trend was observed for the treatment at 1000C. The BET isotherm plots show that the increase in molarity can widen the middle region of the relative pressure that has negative curves, and for molarity higher than 3 M the BET experiment is no longer able to produce such a plot. This results  demonstrate  that  a  significant  change  in  the  microcrystallite dimension  or  pore structure in carbon pellets due to the treatment is corresponding to a dramatic change in their adsorption capacity.

 

 

http://journal.masshp.net/wp-content/uploads/Journal/2004/Masliana%20Muslimin136-143.pdf

 

REFERENCES

 

[1]       Mohamad, D., Sarani, Z. and Murshidi, J. A. (2001); Jpn. J. Appl. Phys. 40, 3311.

[2]       Mohamad, D. Ramli, O., Sarani, Z., Marina, T., Izan, Roshawaty, M.,Azhar, A. and

Astimar A,A. (2004); Adv. In Polym. Tech., 23, 1.

[3]        Mohamad, D., Sarani, Z., Mohamad, H., Astimar, A, A.,   Ridzuan, R., Anis, M., Mohd, Nor, M,.Y. and Mohd, H, S. (1999); J. Mater. Sci. Lett. (U.K./U.S.A.). 18, 249.

[4]       Mohamad, D., Sarani, Z., Ramli, O. and Astimar, A. A. (2000);  Jpn. J. Appl. Phys.

39, 1236.

[5]        Mohamad, D., Marina, T., Izan, Roshawaty, M., Ramli, O., Sarani, Z., Mohd, H. and Azhar, A. (2000) ;  J. Solid State Sci. and Technol. Lett.(J. Solid State Sci & Technol. Soc.). 7 (1/2), 181.

[6]       Mohamad, D., Ramli, O. and Puaad, O. (1999); Carbon 6(2), 151.

[7]       Mohamad, D., Ramli, O. and Abd, Ghani, H. (1998); J. Mater. Sci. Lett. 17, 2059.

[8]       Mohamad,  D.  and  Ramli,  O.  (1997);  Pertanika  J.  Sci.&  Tech.  (J.  Putra  Univ.

Malaysia) 5(1), 1.

[9]       Mohamad, D., Mohd, Pauzi, I. and M, M, Said. (1995); J. Mater. Sci. Lett. 14, 781. [10]     Mohamad, D. and Mohd. Pauzi, I. (1995);  Pertanika J. Sci & Tech. (J. Putra Univ.

Malaysia) 3(2), 203.

[11]     Mohamad, D. (1994); J. Phys. D: Appl. Phys. 27, 1060.

[12]      Mohamad, D., Marina, T., Izan, Roshawaty, M., Ramli, O., Sarani, Z., Rosli, J. and Mohd, Noor, M, Y. (2000); Proc. The Fifth National Sem. on Utilization of Oil Palm Tree (Oil Palm Biomass : Opportunities and Challenges in Commercial Exploitation).

211.

 

[13]     Palm Oil Registration and Licencing Authority [PORLA], Review of the Malaysian

Palm Oil Industry 1996 (1997); 9.

[14]      Mohamad, D., Ramli, O., Sarani, Z., Izan, Roshawaty, M., Marina, T., Norhayati, A. and Rosli, J. (2002); J. Mater. Sci. Lett. 37, 3329.

[15]      Izan, Roshawaty, M., Mohamad, D., Ramli, O., Sarani, Z., , Marina, T., Norhayati, A. and Rosli, J. (2002);  J. Solid State Sci. and Technol. Lett. .(J. Solid State Sci & Technol. Soc.). 9(2),  45.

[16]      Strelko, V, Jr., Malik, D,J. and Streat, M. (2002); Carbon 40, 95. [17]        Otake, Y. and Jenkins, R, G. (1993); Carbon 31, 109.

[18]     Bhabendra, K, Pradhan and Sandle, N, K. (1999); Carbon 37, 1323 [19]      Zhihong, W., Charles, U. and Pittman, Jr. (1995); Carbon 33, 597. [20]     Katsumi, K., Keiko, N. and Hisayoshi, Y. (1998); Carbon 36, 433.

[21]     Moreno- Castilla, C., Lopez-Ramon, M,V. and Carrasco-Marin, F. (1998); Carbon

36, 145.

[22]      Moreno- Castilla, C., Carrasco-Marin, F., Maldonado-Hodar, F, J. and Rivera-Utrilla, J. (1998); Carbon 36  145.

[23]     Nevskaia, D,M. Santianes, A., Munoz, V. and Guerrero-Ruiz, A. (1999); Carbon 37,

1065.

[24]      Sreelaka, M,S., Kumaran, M,G., and Thomas, S. (1997); J. Appl. Polym. Sci. 66, 821. [25]          Azhar, A. and Mohamad, D., Pascasidang Kolokium Pascasiswazah, FSFG: UKM

(Ed. Mohd. Yusof Hj. Othman) (1998); 240.

[26]     Byrne, C,E., and Nagle, D,C. (1997); Carbon 35(2), 259.

[27]     Ryu, Z., Rong, H, Zheng., Wang, J,M. and Zhang, B. (2002); Carbon 40, 1131.

[28]     Carrot, P,J,M., Nabais, J,M,V., Ribeiro, Carrot, M,M,L. and Pajares, J,A. (2001);

Carbon 39, 1543.

[29]     Mikhail, R,S., Brunauer S.and Bodor, E,E. (1968); J. Colloid Interface Sci. 26 45.

[30]     Jenkins, G,M. and Kawamura, K. Polymeric Carbon-Carbon Fibre, Glass and Char

(Cambridge University Press, London, 1976).

[31]     Gurudatt, K. and Tripathi,V,S. (1998); Carbon 36, 1371.