Solid State Science and Technology, Vol. 12, No. 1 (2004) 166-176

CHARACTERISTICS OF CHARGED SPRAYS OF INSULATING HYDROCARBON LIQUIDS

 

Andrew R.H Rigit1, John S. Shrimpton

 

1Faculty of Engineering, University of Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

arigit@feng.unimas.my

Department of Mechanical Engineering, Imperial College London, Exhibition Road, London

SW7 2BX, England, UK. j.shrimpton@ic.ac.uk

 

ABSTRACT

This paper describes the characteristics of charged sprays of insulating liquids generated by charge injection electrostatic atomizers, assessed for a smaller range of orifice diameter and a more viscous liquid than previously investigated. The jet break-up dynamics are qualitatively studied with a high-speed video camera, and the general spray characteristics are quantitatively described in terms of droplet velocity and diameter pdfs with a phase Doppler anemometry (PDA). A  purpose-built transmitter and receiver, and a purpose-built signal- processing counter are used as the main PDA component. Spray charge and mass flow rate as a function of spray radius is also studied using a purpose-built collecting system, and the results suggest that highly charged droplets exist outside the spray cone.

 

http://journal.masshp.net/wp-content/uploads/Journal/2004/Andrew%20R.H%20Rigit%20166-176.pdf

 

REFERENCES

[1]       A.R.H.  Rigit  and  J.S.  Shrimpton,  Electrical  Performance  of  Charge  Injection

Atomizers, submitted to Atomization and Sprays, 2003.

[2]       J.S. Shrimpton and A.J. Yule, Atomization, Combustion and Control of Charged

Hydrocarbon Sprays, Atomization and Sprays, vol. 11, pp. 365-396, 2001.

[3]       C.P. Bankston, L.H. Back, E.Y. Kwack and A.J. Kelly, Experimental Investigation of

Electrostatic Dispersion and Combustion of Diesel Fuel Jets, J. Eng. Gas Turbine and Power, vol.

110, pp. 361-368, 1988.

[4]       R.J. Turnbull, On the Instability of an Electrostatically Sprayed Liquid Jet, Trans.

IEEE Ind. Appl., vol. 28, pp. 1432-1438, 1989.

[5]       A.A. Naqwi, In Situ Measurement of Submicron Droplets in Electrosprays Using a

Planar Phase Doppler System, J. Aerosol Sci., vol. 25, pp. 1201-1211, 1994.

[6]       P.F. Dunn and S.R. Snarski, Droplet Diameter, Flux, and Total Current Measurements in an

Electrohydrodynamic Spray, J. Appl. Phys., vol. 71, pp. 80-84, 1992.

[7]       A. Gomez and K. Tang, On the Structure of an Electrostatic Spray of Monodisperse

Droplets, Phys. Fluids, vol. 6, pp. 2317-2332, 1994.

[8]       A. Gomez and K. Tang, Charge and Fission of Droplets in Electrostatic Sprays, Phys.

Fluids, vol. 6, pp. 404-414, 1994.

[9]       G. Gomez and K. Tang, Monodisperse Electrosprays of Low Electric Conductivity

Liquids in the Cone-jet Mode, J. Coll. Int. Sci., vol. 184, pp. 500-511, 1996.

[10]     J.S.  Shrimpton  and  A.J.  Yule,  Drop  Size  and  Velocity  Measurement  in  an

Electrostatically Produced Hydrocarbon Spray, J. Fluids Engineering, vol. 120, pp.

580-585, 1998.

[11]     J.S. Shrimpton and A.J. Yule, Characterization of Charged Hydrocarbon Sprays for

Application in Combustion Systems, Exp. Fluids, vol. 26, pp. 460-469, 1999.

[12]     J.H. Kim and T. Nakajima, Aerodynamic Influences on Droplet Atomization in an

Electrostatic Spray, JSME Int. Journal B, vol. 42, pp. 224-229, 1999.

[13]     J.S.   Shrimpton   and   A.J.   Yule,   Electrohydrodynamics   of   Charge   Injection

Atomization: Regimes and Fundamental Limits, Atomization and Spray, vol. 13, pp.

46-63, 2003.

[14]     J.S.   Shrimpton,   and   A.J.   Yule,   Electrohydrodynamics   of   Charge   Injection

Atomization:  Atomizer  Design,  accepted  for  publication,  Atomization  and  Spray,

2001.

[15]     Y. Hardalupas and J. Laker, Description of the Thermofluids Section ‘Model 3’ Phase

Doppler Counter, Mechanical Engineering Department, Report TF/93/15, Imperial College London, 1993.

[16]     Y.   Hardalupas   and   A.M.K.P.   Taylor,   On   the   Measurement   of   the   Particle

Concentration Near a Stagnation Point, Exp. Fluids, vol. 8, pp. 113-118, 1989.

Concentration Near a Stagnation Point, Exp. Fluids, vol. 8, pp. 113-118, 1989.