Solid State Science and Technology, Vol. 12, No. 1 (2004) 90-97

 

THE ELECTRICAL, STRUCTURAL AND THERMAL PROPERTIES OF COPPER(II) 4-AMINOBENZOATE AND COPPER(II) 3,5-DINITROBENZOATE

 

Richard Ritikosa and Siti Meriam Ab. Gania, Norbani Abdullahb

 

aSolid State Physics Research Laboratory

Physics Department, Universiti Malaya

50603 Kuala Lumpur

 rritikos@um.edu.my, smag@um.edu.my

 

bChemistry Department, Universiti Malaya

50603 Kuala Lumpur

 norbania@um.edu.my

 

ABSTRACT

The electrical, structural and thermal properties of copper(II) 4-aminobenzoate and copper(II)

3,5-dinitrobenzoate are reported. The direct current conductivities were analyzed at low (10 < T(K) < 300) and at high temperatures (300 < T(K) < 440). The Mott’s variable range hopping and Arrhenius laws were used as models for the conductivity profiles obtained. The results show that the electronic conduction characteristics of these materials depend on the structure and thermal stability. X-ray powder diffraction, infrared spectroscopy, thermogravimetric analysis and differential scanning calorimetry support the above findings.

 

http://journal.masshp.net/wp-content/uploads/Journal/2004/Richard%20Ritikos%2090-97.pdf

 

REFERENCES

[1]        Joaquin B., Esteruelas M.A., Levelut A.M., Oro L.A., Serrano J.L. and Sola E., Inorg.

Chem., 31 (1992) 732-737.

[2]        Nukada R., Mori W., Takamizawa S., Mikuriya M., Handa M. and Naono H., Chem.

Lett., 5 (1999) 367-368.

[3]        Rusjan M., Donnio B., Guillon, D., and Cukiernik F. D., Chem. Mater., 14(4) (2002)

1564-1575.

[4]        Chisholm M.H., Christou G., Folting K., Huffman J.C., James C.A., Samuels J.A., Wesemann J.L. and Woodruff W.H., Inorg. Chem., 35 (1996) 3643-3658.

[5]        Ritikos R., Ab. Gani S.M. and Abdullah N., J. Fiz. Mal., 23 (2002) 97-99.

[6]        Norbani Abdullah, Wan Haliza Abd. Majid, Siti Meriam Ab. Gani and Saadah Abdul

Rahman, 1997. Bulletin of Malaysian Solid State Science & Technology, 7(2) (1997)

43.

[7]        Silverstein, R.M., Spectrometric Identification of Organic Compounds, Sixth Ed. John

Wiley & Sons Inc. (1998) 71-109.

[8]        Pavia D.L, Lampman G.M. and Kriz G.S., Introduction to Spectroscopy, Second Ed., Saunders College Pudlishing, (1996) 14-94.

[9]        Deacon G.B. and Phillips R.J., Coord. Chem. Rev., 33 (1980) 227-250.

[10]      Kawata T., Uekusa H., Ohiba S., Furukawa T., Tokii T., Muto Y. and Kato M., Acta

Cryst.,  B48 (1992) 253-261.

[11]      Attard G.S. and Cullum P.R., Liq. Cryst., 8 (1990) 299-309.

[12]      Giroud-Godquin A.M., Latour J.M. and Marchon J.C., Inorg. Chem., 24 (1985) 4452-

4454.

[13]      Douglas  B.,  McDaniel D.  and  Alexander J.,  Concepts  and  Models  of  Inorganic

Chemistry, John Wiley & Sons (1993).

[14]      Klug H.P. and Alexander L.E., X-ray Diffraction Procedures for Polycrystalline and

Amorphous Materials, John Wiley and Sons Inc. (1985).

[15]      Mounir M., Darwish K.A., El-Ansary A.L. and Hassib H.B., Thermochimica Acta.,

114 (1987) 257-263.

[16]     Keller H.J., Low Dimensional Cooperative Phenomena, Plenum Press, New York, (1975).

[17]      Wang A.H., Javadi H.S., Ray A., MacDiarmid A.G. and Epstein A.J., Phys. Rev. B,

42 (1990) 5411-5414.

[18]      Gosh M., Barman A., Meikap A.K., De S.K. and Chatterjee S., Phys. Lett. A, 260

(1996) 138-148.

[19]      Mott N.F., Metal-Insulator Transitions, Taylor & Francis Ltd (1974).

[20]      Briers J., Eevers W., Cos. P., Geise H.J., Mertens R., Nagel P., Zhang X.B., Van

Tendeloo G., Herrebot W. and Van der Veken B., Polymer, 35 (1994) 4569.

[21]      Brodsky  M.H.,  Amorphous  Semiconductors,  Springer-Verlag  Berlin  Heidelberg

(1979).