Solid State Science and Technology, Vol. 14, No 1 (2006) 153-159

ISSN 0128-7389

153

ANTIMONY-DOPED TIN OXIDE NANOSTRUCTURES PREPARED BY SOLGEL

DIP COATING METHOD

 

Sabar D. Hutagalung, Khatijah A. Yaacob and Lee B. Yeow

School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia,

14300 Nibong Tebal, Penang, Malaysia

 

ABSTRACT

Tin oxide (SnO2) thin films are widely used as a gas sensor that can change their resistance during interaction with molecular gases. One of the most important factors that influence the sensitivities of sensing material is its structural properties especially surface morphology. In this work, we present preparation and characterization of undoped and antimony-doped tin oxide (Sb:SnO2) thin film nanostructures for gas sensing applications. The SnO2 thin films were deposited by sol-gel dip coating method onto glass substrates and sintered at 500 oC in air. Sb dopant concentration was varied from 1 to 4 mol% to investigate the effect of doping on the electrical and sensing properties. The films were characterized by XRD, SEM and AFM. The SEM and AFM images of films showed a very smooth surface morphology with nanostructure grain size in the range of 37.6 to 56.3 nm. Sensing sensitivity of Sb:SnO2 films are much higher than undoped films.

 

http://journal.masshp.net/wp-content/uploads/Journal/2006/Sabar%20D.%20Hutagalung%20153-159.pdf

 

 

REFERENCES

[1] Onyia, A. I, Okeke, C. E. (1989); J. Phys. D: Appl. Phys. 22, 1515.

[2] Rella, R., Serra, A., Siciliano, P., Vasanelli, R., De, G., Licciulli, A., Quirini, A. (1997); Sensor & Actuators B 44, 462.

[3] Siciliano, P. (2000); Sensor & Actuators B 70, 153.

[4] Emiroglu, S., Barsan, N., Weimar, U., Hoffmann, V. (2001); Thin Solid Films 391, 176.

[5] Cukrov, L. M., McCormick, P. G., Galatsis, K., Wlodarski, W. (2001); Sensor & Actuators B 77, 491.

[6] Supothina, S. (2003); Sensor & Actuators B 93, 526.

[7] Hyodo, T., Abe S., Shimizu Y., Egashira M. (2003); Sensor & Actuators B 93,590.

[8] Niranjan, R. S., Hwang, Y. K., Kim, D.-K, Jhung, S. H., Chang, J. S, Mulla, I.

S. (2005); Mater. Chem. Phys. 92, 384.

[9] Guzman, G., Dahmani, B., Puetz, J., Aegerter, M. A. (2006); Thin Solid Films 502, 281.

[10] Huang, H., Kelder, E. M., Chen, L. (1999); J. Power Sources 81-82, 362.

[11] Terrier, C., Chatelon, J. P., Roger, J. A. (1997); Thin Solid Films 295, 95.

[12] Galatsis, K., Cukrov, L., Wlodarski, W., McCormick, P. (2003); Sensor &

Actuators B 93, 562.

[13] Elengovan, E., Shivashankar, S. A., Ramamurthi, K. (2005); J. Crys. Growth 276, 215.

[14] Brinker, C. J., Hurd, A. J., Ward, K. J. (1988); Ultrastructure Processing of Advanced Ceramics, eds. J. D. Mackenzie and D. R. Ulrich, Wiley, pp. 223.

[15] Hu, Y. and Hou, S. H. (2004); Mater. Chem. Phys. 86, 21.

[16] Gopalakrishnan, P. S., and Manphar, H. (1976); J. Sol. State Chem. 16, 301.

[17] Chatterjee, K., Chatterjee, S., Banerjee, A., Raut, M., Pal, N. C., Sen, A., and

Maiti, H. S. (2003); Mater. Chem. Phys. 81, 33.