Solid State Science and Technology, Vol. 15, No 1 (2007) 116-121

ISSN 0128-7389

Corresponding Author: sulhadi_fis@yahoo.com

116

THERMAL STABILITY AND STRUCTURAL STUDIES IN THE

TeO2–ZnO–MgO–Li2O–Er2O3 GLASS SYSTEM

Sulhadi, M. R. Sahar, M. S. Rohani and R. Arifin

Advanced Optical Material Research Group, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor DT-Malaysia

 

ABSTRACT

Series of (80-x)TeO2-18ZnO-1MgO-1Li2O-xEr2O3 glass system (0.5mol%x2.5mol%) has successfully been made by melt quenching technique. The thermal stability and structure of glass has been investigated by means of TG/DTA and FTIR spectroscopy. The thermal parameters, such as the glass transition temperature (Tg), crystallization temperature (Tc) and thermal stability (Tc-Tg) were determined. It is found that this system provides a wide and stable glass formation in which the glass stability around 97oC-117oC may be obtained. The broad absorption peaks were

observed around 657cm-1-671cm-1 and 755cm-1-758cm-1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. The absorption peaks around 1600cm-1 and 3400cm-1 are assigned to a stretching vibration of the hydroxyl group participating in the strong metal and hydrogen bonding respectively.

 

http://journal.masshp.net/wp-content/uploads/Journal/2007/Jilid%201/Sulhadi%20116-121.pdf

 

REFERENCES

[1] El-Mallawany, R. (2002); Tellurite Glasses Handbook: Physical Properties

and Data; CRC Press LLC.

[2] Nukui,A. Taniguchi,T. Miyata,M. (1995); J. Non-Cryst. Solids 293-295, 255.

[3] Sahar, M.R. Noordin, N. (1995); J. Non-Cryst. Solids 184, 137.

[4] Bǘrger, H. Kneipp, K. Hobert, H. Vogel, W. (1992); J. Non-Cryst. Solids 151,

134.

[5] Neindre, L.L. Jiang, S. Hwan, B.C. Luo, T. Watson, J. Peyghambarian, N.

(1999); J. Non-Cryst. Solids 255, 97.

[6] Sidebottom, D.L. Hruschka, M.A. Potter, B.G. Brow, R.K. (1997); J. Non-

Cryst. Solids 222, 282.

[7] Marjanovic, S. Toulouse, J. Jain, H. Sandmann, C. Dierolf, V. Kortan, A.R.

Kopylov, N. Ahrens, R.G. (2003); J. Non-Cryst. Solids 322, 311.

[8] Tastumisago, M. Minami, T. Kowada, Y. Adachi, H. (1994); Phys. Chem.

Glasses 35, 89.

[9] El-Moneim, A. A. (2002); Mater. Chem & Phys 73, 318.

[10] Kawasaki, S. Honma, T. Benino, Y Pujiwara, T. Sato, R. Komatsu, T. (2003);

J. Non-Cryst. Solids 325, 61.

[11] Sahar, M.R. Jehbu, A.K. Karim, M.M. (1997); J. Non-Cryst. Solids 213&214,

164.

[12] Liu, H.S. Chin, T.S. Yung, S.W. (1997); Mater. Chem & Phys 50, 1.

[13] Xia, H. Nie, Q. Zhang, J. Wang, J. (2003); Mater. Lett 4446, 1.

[14] Hu, L. Jiang, Z. (1996); Phys. Chem. Glasses 37 [1], 19.

[15] Nazabal,V. Todoroki, S. Nukui, A. Matsumoto,T. Suehara, S. Hondo,T.

Araki,T. Rivero, C. Cardinal, T. (2003); J. Non-Cryst. Solids 325, 85.

[16] Charton, P. Thomas, P. Armand,P. (2003); J. Non-Cryst. Solids 321, 81.

[17] Li, H. Su, Y. Sundaram, S.K. (2001); J. Non-Cryst. Solids 293-295, 402.

[18] Sekiya, T. Mochida, N. Ohtsuka, A. Tonokawa, M. (1992); J. Non-Cryst.

Solids 144, 128.

[19] Feng, X. Tanabe, S. Hanada, T. (2001); J. Non-Cryst. Solids 281, 48.