Solid State Science and Technology, Vol. 15, No 1 (2007) 127-134

ISSN 0128-7389

Corresponding Author: azmier@perdana.um.edu.my

127

CARBON MOLECULAR SIEVES FROM CARBON DEPOSITION OVER

PALM SHELL BASED ACTIVATED CARBON

M.A. Ahmada,b, , W.M.A.W. Dauda and M.K. Arouab

aDepartment of Chemical Engineering, University of Malaya,

50603 Kuala Lumpur, Malaysia

bSchool of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan,

14300 Nibong Tebal, Penang, Malaysia

 

ABSTRACT

Adsorption on carbon molecular sieves (CMS) prepared by carbon deposition (CD) has

become an interesting area of adsorption due to its microporous nature and favorable

separation factor on size and shape selectivity basis for many gaseous systems. Gas

separation in PSA systems is their main industrial application. In the present work, the

preparation of CMS by carbon deposition on palm shell based activated carbon has been

studied. The activation temperature of 830oC using steam for 60 minutes produced the

highest micropore volume of the order 0.407 cm3/g, which is used as precursor for CMS

production. The best CMS for feed benzene entrance of 1.87 x 10-5 g/ml N2 was

produced at cracking time of 30 min. All the products were characterized by analysis of

adsorption isotherm, BET surface area, micropore volume, and equilibrium isotherms.

 

http://journal.masshp.net/wp-content/uploads/Journal/2007/Jilid%201/M.A.%20Ahmad%20127-134.pdf

 

REFERENCES

[1]. Ma, A.A. (2002); Palm Oil Engineering Bulletin 65, 24.

[2]. Husain, Z., Zainac, Z., Abdullah, Z. (2002); Biomass and Bioenergy 22, 505.

[3]. Cabrera, A.L., Zehner, J.E., Coe, C.G., Gaffney, T.R., Farris, T.S., Armor,

J.N. (1993); Carbon 31, 969.

[4]. Braymer, T.A., Coe, C.G., Farris, T.S., Gaffney, T.R., Schork, J.M., Armor,

J.N. (1994); Carbon 32, 445.

[5]. Vyas, S.N., Patwardhan, S.R., Vijayalakshmi, S., Ganesh, K.S. (1994); J. of

Colloid Interf. Sci. 168, 275.

[6]. Nguyen, C. and Do, D. (1995); Carbon 33, 1717.

[7]. Zhonghua, H., Vansant, E.F. (1995); Carbon 33, 561.

[8]. Vyas, S.N., Patwardhan, S.R., Gangadhar, B. (1992); Carbon 30, 605.

[9]. Miura, K. and Hayashi, J. (1991); Carbon 29, 653.

[10]. Bello, G., Garcia, R., Arriagada, R., Sepulveda-Escribano, A., Rodriguez-

Reinoso, F. (2002); Microporous and Mesoporous Mater. 56, 139.

[11]. Villar-Rodil, S., Navarrete, R., Denoyel, R., Albibiak, A., Parades, J.I.,

Martinez-Alonso, A., Tascon, J.M.D. (2005); Microporous and Mesoporous

Mater. 77, 109.

[12]. Freitas, M.M.A., and Figueiredo, J.L. (2001), Fuel 80, 1.

[13]. Kawabuchi, Y., Kishino, M., Kawano, S., Whitehurst, D.D., Mochida, I.

(1996); Langmuir 12, 4281.

[14]. Wan Daud, W.M.A. and Wan Ali, W.S. (2004); Bioresource Tech. 93 , 63.

[15]. Jasieńko-Hałat, M., and Kędzior, K. (2005); Carbon 43, 944.

[16]. Zhang, T., Walawender, M.P., Fan, L.T., Fan, M., Daugaard, D., Brown, R.C.

(2004); Chem. Eng. J. 105, 53.