Solid State Science and Technology, Vol. 15, No 2 (2007) 28-33

ISSN 0128-7389

 

OPTICAL TRANSITIONS OF Er3+ DOPED TELLURITE GLASSES

M. R. Sahar, Sulhadi and M. S. Rohani

Advanced Optical Material Research Group, Physics Dept, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor DT, Malaysia.

 

ABSTRACT

Er3+ doped tellurite glasses of molar composition (80-x)TeO2-18ZnO-1MgO-1Li2O-(x)Er2O3 system (0.5mol%≤x≤2.5mol%) have successfully been made by melt quenching technique. The absorption spectra were measured and the Judd-Ofelt analysis was performed. It is found that the spectrum of UV-Vis-NIR spectroscopy is consists of absorption peaks around 1530nm, 974nm, 798nm, 652nm, 544nm, 522nm, 488nm, 452nm, 444nm, and 406nm, and are correspond to the transitions from ground state 4I15/2 to the excited state of 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2, 4F5/2, 4F3/2, and 2H9/2 respectively. The Judd-Ofelt parameters Ω2, Ω4, Ω6 have been used to correlate between the composition and the change of structure of the host glass. It is found that the Er3+ content exhibits some influences on the spectroscopic properties of the optical transition for Er3+ions.

http://journal.masshp.net/wp-content/uploads/Journal/2007/Jilid%202/M.%20R.%20Sahar%2028-33.pdf

REFERENCES

 

[1] Nukui, A., Taniguchi, T. and Miyata, M. (2001); J. Non-Cryst. Solids, 293-295, 255.

[2] El-Mallawany, R. (2002); Tellurite Glasses Handbook : Physical Properties and Data, CRC Press LLC.

[3] Sahar, M.R. and Noordin, N. (1995); J. Non-Cryst. Solids, 184, 137.

[4] Bǘrger, H., Kneipp, K., Hobert, H. and Vogel, W. (1992); J. Non-Cryst. Solids, 151, 134.

[5] Neindre, L.L., Jiang, S., Hwan, B.C., Luo, T., Watson, J. and Peyghambarian, N. (1999); J. Non-Cryst. Solids, 255, 97.

[6] Sidebottom, D.L., Hruschka, M.A., Potter, B.G. and Brow, R.K. (1997); J. Non-Cryst. Solids, 222, 282.

[7] Marjanovic, S., Toulouse, J., Jain, H., Sandmann, C., Dierolf, V., Kortan, A.R., Kopylov, N. and Ahrens, R.G. (2003); J. Non-Cryst. Solids, 322, 311.

[8] Sahar, M.R., Sulhadi, Rohani, M.S. (2005); J. Solid St. Sci. and Technol. Letters, 12[1&2], 320.

[9] Judd, B.R. (1962); Optical absorption intensities of rare-earth ions, Phys Rev. 127, 750.

[10] Ofelt, G.S. (1962); Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37, 511.

[11] Rolli, R., Montagna, M., Chaussedent, S., Monteil, A., Tikhomirov, V.K. and Ferrari, M. (2003); Optical Material, 21, 743.

[12] Lin, H., Jiang, S., Wu, J., Song, F., Peyghambarian, N. and Pun, E.Y.B. (2003); J. Phys D: Appl. Phys. 36, 812.

[13] Carnall, W.T., Fields, P.R. and Wybourne, B.G. (1965); J. Chem. Phys. 42 (11), 3797.

[14] Carnall, W.T., Fields, P.R. and Rajnek, K. (1968); J. Chem. Phys. 49 (10), 4424.

[15] Subbalakshmi, P. andVeeraiah, N. (2003); J. Phys. and Chem. Solids, 64, 1027.

[16] Xu, S., Yang, Z., Dai, S., Yang, J., Hu, L. and Jiang, Z. (2003); J. Alloys Comp. 361, 313.

Corresponding