Solid State Science and Technology, Vol. 20, No 1 & 2 (2012) 102-108

ISSN 0128-7389

102

INVESTIGATION OF RECOMBINATION PROCESS OF P3HT:PCBM ORGANIC SOLAR CELL

 

Eng Kok Chiew1,*, Muhammad Yahaya2 and

A. P. Othman1

1School of Applied Physics,Faculty of Science and Technology,Universiti Kebangsaan

Malaysia,43600 UKM Bangi,Selangor,Malaysia

2Institute of Microengineering and Nanoelectronis,Universiti Kebangsaan

Malaysia,43600 UKM Bangi,Selangor,Malaysia

*Corresponding author: engkok.chiew@yahoo.com

 

ABSTRACT

A computational study on a recombination mechanism in a bulk heterojunction (BHJ)

organic solar cells of P3HT:PCBM was done. Using the simulation tools SCAPS, the

electrical performances of organic solar cells and the intensity-dependent current

density -voltage (J-V) were simulated and compared with the actual experimental

result. Various light intensity dependent simulations were performed, and the results

found showed that the higher the light intensity, the higher the current in reverse bias,

since more photo-generated charge carriers were available to participate in the current.

Keywords: Bulk Heterojunction; organic solar cells; simulation; SCAPS;

recombination; P3HT/PCBM; modeling

 

http://journal.masshp.net/wp-content/uploads/Journal/2012/Eng%20Kok%20Chiew%20102-108.pdf

 

REFERENCES

[1] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270 (1995) 1789

1791

[2] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.

Hummelen, Applied Physics Letters 78 (2001) 841843.

[3] Information on

http://www.pvtech.org/news/_a/new_polymers_push_solarmers_opv_efficiency

_to_record_8.13/

[4] L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Applied Physics Letters 88

(2006) 052104-1052104-3.

[5] R.A. Street, Applied Physics Letters 93 (2008) 133308133311.

[6] M. Hallermann, E. Da Como, J. Feldmann, M. Izquierdo, S. Filippone, N.

Martin, S. Juchter, E. von Hauff, Applied Physics Letters 97 (2010) 023301

023303.

[7] R.A. Street, M. Schoendorf, Physical Review B, 81 (2010) 205307-1205307-

12.

[8] I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, J.C. Hummelen,

Advanced Functional Materials 14 (2004) 3844.

[9] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells, Advanced

Functional Materials 11 (2001) 1526.

[10] Information on http://www.light.t.utokyo.

ac.jp/english/photovoltaic/Introduction.html

[11] M. Burgelman, P. Nollet and S. Degrave, Thin Solid Films, 361-362, 2000, 527

532

[12] S.M.Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley, London, 1981.

[13] V.D.Mihailetchi, H.X.Xie, B.deBoer, L.J.A.Koster, P.W.M.Blom, Charge

transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells,Advanced

Functional Materials 16 (2006) 699-C708

[14] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T.

Rispens, L. Sanchez, J.C. Hummelen, Advanced Functional Materials 11 (2001)

374-380

[15] Y.Roichman, N. Tessler, Applied Physics Letters 80 (2002) 1948-C1950

[16] H.K. Gummel, IEEE Transactions on Electron Devices 11 (1964) 455465

[17] Liming Liu, Guangyong Li, Solar Energy Materials & Solar Cells 95 (2011)

25572563