Solid State Science and Technology, Vol. 20, No 1 & 2 (2012) 28-34

ISSN 0128-7389

28

INVESTIGATION OF MORPHOLOGY AND MAGNETIC PROPERTIES OF

COBALT NANOPARTICLES PREPARED USING MICROEMULSION

TECHNIQUE

 

Ghazaleh Bahmanrokh1,* and Mansor Hashim1,2

1Physics Department, Faculty of Science, University Putra Malaysia,

43400 UPM, Serdang, Selangor, Malaysia

2Advance Materials and Nanotechnology Laboratory,

Institute of Advanced Technology, University Putra Malaysia,

43400 UPM, Serdang, Selangor, Malaysia

 

*Corresponding author: ghazalehbahmanrokh@yahoo.com

 

ABSTRACT

Among many ferromagnetic materials cobalt nanoparticles with high coercivity and

small grain size are one of the potential candidates having application in high-density

storage media manufacturing. Magnetic cobalt nanoparticles have been synthesized via

microemulsion technique to control the shape and size of high quality magnetic

nanoparticles. In this technique, cetiltrimethylammonium bromide (CTAB) was added

as surfactant to control the particle size. The morphology and magnetic properties have

been characterized before and after annealing by X-ray diffraction, transmission

electron microscopy and vibrating sample magnetometer. The hysteresis measurement

of as prepared sample exhibits a coercivity of 27.26 Oe at room temperature. Annealing

the sample at 400 C enhance magnetic properties and change the crystal structure of

particles from hcp to fcc.

Keywords: cobalt; nanoparticles; microemulsion; coercivity

 

http://journal.masshp.net/wp-content/uploads/Journal/2012/Ghazaleh%20Bahmanrokh%2028-34.pdf

 

REFERENCES

[1] S. Smirnov and S. Komogortsev, Journal of Magnetism and Magnetic Materials,

320 (2008) 1123-1127

[2] B. Buchine, W. Hughes, F. Degertekin, and Z. Wang, Nano Lett, 6 (2006) 1155-

1159

[3] I. Chen and X. Wang, Nature, 404 (2000) 168-171

[4] J. Chen, C. Sorensen, K. Klabunde, and G. Hadjipanayis, Physical Review B, 51

(1995) 11527-11532

[5] M. Rutnakornpituk, M. Thompson, L. Harris, K. Farmer, A. Esker, J. Riffle, J.

Connolly, and T. St Pierre, Polymer, 43 (2002) 2337-2348

[6] M. Salavati-Niasari, Z. Fereshteh, and F. Davar, Polyhedron, 28 (2009) 1065-

1068

[7] Y. Lee, O. Tan, M. Tse, and A. Srivastava, Ceramics International, 30 (2004)

1869-1872

[8] Z. Wang, Z. Zhang, C. Choi, and B. Kim, Journal of Alloys and Compounds, 361

(2003) 289-293

[9] F. Teng, Z. Tian, G. Xiong, and Z. Xu, Catalysis Today, 93 (2004) 651-657

[10] F. Guo, H. Li, Z. Zhang, S. Meng, and D. Li, Journal of Colloid and Interface

Science, 322 (2008) 605-610

[11] T. Meron, Y. Rosenberg, Y. Lereah, and G. Markovich, Journal of Magnetism

and Magnetic Materials, 292 (2005) 11-16

[12] Y. Ichiyanagi and S. Yamada, Polyhedron, 24 (2005) 2813-2816

[13] B. Concha, R. Zysler, and H. Romero, Physica B: Condensed Matter, 384 (2006)

274-276

[14] J. Cason and C. Roberts, J. Phys. Chem. B, 104 (2000) 1217-1221

[15] M. Chen, Y. Feng, L. Wang, L. Zhang, and J. Zhang, Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 281 (2006) 119-124

[16] X. Lin and A. Samia, Journal of Magnetism and Magnetic Materials, 305 (2006)

100-109

[17] V. Mancier, C. Rousse-Bertrand, J. Dille, J. Michel, and P. Fricoteaux,

Ultrasonics sonochemistry 17 (4) 2009 690-696

[18] I. Galanakis, M. Alouani, and H. Dreysse, Physica B: Condensed Matter, 320

(2002) 221-225

[19] R. Birringer, H. Gleiter, H. Klein, and P. Marquardt, Physics Letters A, 102

(1984) 365-369

[20] H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, and K. Oikawa,

Applied Physics Letters, 81 (2002) 1657