Solid State Science and Technology, Vol. 20, No 1 & 2 (2012) 35-40

ISSN 0128-7389

35

SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si

(111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE

 

Habib Hamidinezhad*, Yussof Wahab, Zulkafli Othaman and Imam Sumpono

Ibnu Sina Institute for Fundamental Science Studies (IIS),

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

*Corresponding author: habib_hamidinezhad@yahoo.com

 

ABSTRACT

Silicon nanowires were grown on Si (111) substrates by very high frequency plasma

enhanced chemical vapor deposition (VHF-PECVD). The nanowires were grouted at

450 C and 21 watt RF power. Pure silane (99.9995%) and gold colloid were used as

precursor and catalyst respectively for growth of wires. The nanowires were

investigated using scanning electron microscopy (SEM). Their crystallity and

compositions were studied using X-ray diffraction method and energy dispersive X-ray

(EDX) spectroscopy. The growth of Si nanowires is controlled by conventional vaporliquid-

solid (VLS) mechanism. The results showed that there were gold particle on the

top of wires. The silane flow rates does effect the quantity of Si nanowire. The Si

nanowires length changes from 350 nm to 5.5 m for Si flow rate of 5 to 20 sccm,

respectively. XRD and EDX results revealed that the nanowires composed of mainly Si

with small percent of Au and oxygen.

Keywords: silicon nanowire; PECVD

 

http://journal.masshp.net/wp-content/uploads/Journal/2012/Habib%20Hamidinezhad%2035-40.pdf

 

REFERENCES

[1] A.M. Morales, C.M. Lieber, Science 279 (1998) 208

[2] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947

[3] S. Iijima, Nature 354 (1991) 56

[4] J. J. Niu and J. N. Wang, Mater. Lett. 62 (2008) 767

[5] Y.H. Tang, Y.F. Zhang, C.S. Lee, N. Wang, D.P. Yu, I. Bello, S.T. Lee, Mat.

Res. Soc. Symp. Proc. 526 (1998) 73

[6] Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl.

Phys. Lett. 72 (1998) 1835

[7] N. Wang, Y.H. Tang, Y.F. Zhang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Chem.

Phys. Lett. 283 (1998) 368

[8] Y.Wu, R. Fan, and P. Yang, Nano. Lett. 2 (2002) 83

[9] A.M. Morales, and C.M. Lieber, Science, 279 (1998) 208

[10] N. Fukata, T. Oshima, T. Tsurui, S. Ito, K. Murakami, Sci. Technol. Adv. Mater.

6 (2005) 628

[11] Y. Cui, C.M. Lieber, Science. 291 (2001) 851-853

[12] S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E.

Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94 (2003) 6005

[13] Y.J. Zhang, Q. Zhang, N.L. Wang, Y.J. Yan, H.H. Zhou, J. Zhu, J. Cryst.

Growth 226 (2001) 185

[14] Y. Kanemitsu, H. Uto, Y. Masurnoto, T. Matsumoto, T. Futagi, H. Mimura,

Phys. Rev. B 48 (1993) 2827

[15] N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee, Chem. Phys.

Lett. 299 (1999) 237

[16] J.J. Niu, J. Sha, X.Y. Ma, J. Xu, D.R. Yang, Chem. Phys. Lett. 367 (2003) 528