Solid State Science and Technology, Vol. 20, No 1 & 2 (2012) 68-74

ISSN 0128-7389

68

EFFECT OF OXYGEN ADDITION ON SIDEWALLS OF SILICON SQUARE

MICRO-PIT ARRAYS USING SF6 BASED REACTIVE ION ETCHING

Maryam Alsadat Rad* and Kamarulazizi Ibrahim

Nano Optoelectronics Research & Technology Lab, School of Physics,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

*Corresponding author: maryam.s.rad@gmail.com

 

ABSTRACT

In this paper, the etching profile of silicon square micro-pits array using SF6 based

Reactive ion etching (RIE) is reported. This micro-pits array was created on a Si

substrate with poly methyl methacrylate (PMMA) mask during the RIE process. Effects

of O2 addition and pressure decreasing were described by chemical reactions of etching

and experimental results. Atomic force microscopy (AFM) was utilized to investigate

etching profile of these micro-pit arrays. Etching of micro-pits with O2 addition results

a vertical sidewall with 3 nm roughness of the inter-pit spacing, while V-groove shaped

in sidewall was obtained in absence of O2. These square micro-pits have a good

potential to be used in biology applications due to its dimension, especially for

confinement region for biological objects e.g. DNA.

 

Keywords: Silicon; Micro-pit; Reactive ion etching; Sidewall; Electron beam

Lithography

 

http://journal.masshp.net/wp-content/uploads/Journal/2012/Maryam%20Alsadat%20Rad%2068-74.pdf

 

REFERENCES

[1] D. Sinton, R. Gordon, AG. Brolo, Microfluidics and Nanofluidics 4 (2008) 107-

116

[2] C.H. Liu, M.H. Hong, M.C. Lum, H. Flotow, F. Ghadessy, J.B. Zhang, Appl

Phys A 101 (2010) 237-241.

[3] T. Baba, N. Kamizawa, M. Ikeda, Physica B 227 (1996) 415-418

[4] Y. Xu, H.B. Sun, J.Y. Ye, S. Matsuo, H. Misawa, J. Opt. Soc. Am. B 18 (2001)

1084-1091

[5] W. Hattori, H. Someya, M. Baba, H. Kawaura, Journal of Chromatography A

1051 (2004) 141-146

[6] Y. Huang, B. Agrawal, D. Sun, J.S. Kuo, J.C. Williams, Biomicrofluidics 5

(2011) 013412

[7] D. Erickson, S. Mandal, A.H.J. Yang, B. Cordovez, Microfluid Nanofluid 4

(2008) 35

[8] X.M. Yan, S. Kwon, A.M. Contreras, M.M. Koebel, J Bokor, G A Somorjai,

Catal. Lett. 105 (2005) 127

[9] R.R.A Syms, D.F. Moore, Materials Today 5 (7) (2002) 26-35

[10] R.R.A. Syms, J Micromech Microeng 12 (2002) 211-218

[11] A.J. Watts, W.J.Varhue, J. Vac. Sci. Technol. A 10 (1992) 1313

[12] Y. Lii, J. Jorne, J. Electrochem. Soc. 137 (1990) 3633

[13] E. Gogolides, H.H. Sawin, J. Electrochem. Soc. 136 (1989) 1147-1154

[14] G.S. May, J. Huang, C.J. Spanos, IEEE Trans. Semicond. Manuf. 4 (1991) 83-98

[15] I. W. Rangelow, A. Fichelscher, Proc. SPIE 1392 (1990) 240

[16] C.P.D. D’Emie, K.K. Chan, J. Blum, J Vac Scl Technol B 10 (1992) 1105-1110

[17] M. Francou, J.S. Danel, L. Peccoud, Sens Actuators Phys A 46–47 (1995) 17-21

[18] D.M. Manos, D.L. Flamm, Plasma, Etching: An Introduction. Academic Press,

Boston, London (1989)

[19] T. Syau, B.J. Baliga, R.W. Hamaker, J Electrochem Soc 138 (1991) 3076-3081.

[20] R. Legtenberg, H. Jansen, M. Deboer, M. Elwenspoek, J Electrochem Soc 142

(1995) 2020-2028

[21] M. Zeuner, J. Meichsner, H.U. Poll, Plasma Sources Sci. Technol. 4 (1995) 406-

415