Solid State Science and Technology, Vol. 20, No 1 & 2 (2012) 88-95

ISSN 0128-7389

88

 

SELF-CONSISTENT CALCULATION WITH ADAPTIVE BOUNDARY

CONDITION OF ELECTRON STATES IN SILICON n-MOS

NANOSTRUCTURES

 

G. Gopir 1, Y. Y. Khoo1, C. Y. Woon1 and A. P. Othman2

1School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia

2Institute of Space Science (ANGKASA),

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Corresponding author: gerigopir@gmail.com

 

ABSTRACT

We develop a computational procedure to calculate the properties of electron states in a

Si n-MOS inversion layer by discretizing and iteratively solving the differential

Schrödinger and Poisson equations using centered finite differences. In this selfconsistent

calculation, we apply an adaptive boundary condition to the wave function

and confining potential at the bulk side of the nanostructure; and incorporate Fermi-

Dirac distribution for the ionized acceptor density in the inversion and depletion layers.

This requires relatively simpler inputs and we are able to determine the various

parameters of the electron state subbands. We compared our results with those

published in the literature applying self-consistent Schrödinger-Poisson calculation on

similar Si n-MOS nanostructures.

 

Keywords: MOS inversion layer; nanostructure; self-consistent calculation; Schrödinger-Poisson; electron state

 

http://journal.masshp.net/wp-content/uploads/Journal/2012/G.%20Gopir%2088-95.pdf

 

REFERENCES

[1] F. Stern, Phys. Rev. B 5 (1972) 4891-4899

[2] F. Stern & S. Das Sarma, Phys. Rev. B 30 (1984) 840-848

[3] S. M. Sze, Semiconductor Devics: Physics and Technology, Wiley, New York,

1985

[4] C. D. Simserides & G. P. Triberis, J. Phys.: Condensed Matter 5 (1993) 6437-

6446.

[5] J. A. Cuesta, A. Sanchez & F. Dominguez-Adame, Semicond. Sci. Technol. 10

(1995) 1303-1309

[6] A. Trellakis & U. Ravioli, Comput. Methods Appl. Mech. Engrg. 181 (2000)

437-449

[7] E. Ozturk, Y. Ergun, H. Sari & I. Sokmen, Semicond, Sci. Technol. 16 (2001)

421-426

[8] V. V. Mitin, V. A. Kochelap & M. A. Stroscio, Quantum Heterostructures:

Microelectronics and Optoelectronics, Cambridge University Press, Cambridge,

UK, 1999

[9] C. Hamaguchi, Basic Semiconductor Physics, Springer, Berlin, 2001